Abstract:The combination of Integrated Sensing and Communication (ISAC) and Mobile Edge Computing (MEC) enables devices to simultaneously sense the environment and offload data to the base stations (BS) for intelligent processing, thereby reducing local computational burdens. However, transmitting raw sensing data from ISAC devices to the BS often incurs substantial fronthaul overhead and latency. This paper investigates a three-tier collaborative inference framework enabled by Integrated Sensing, Communication, and Computing (ISCC), where cloud servers, MEC servers, and ISAC devices cooperatively execute different segments of a pre-trained deep neural network (DNN) for intelligent sensing. By offloading intermediate DNN features, the proposed framework can significantly reduce fronthaul transmission load. Furthermore, multiple-input multiple-output (MIMO) technology is employed to enhance both sensing quality and offloading efficiency. To minimize the overall sensing task inference latency across all ISAC devices, we jointly optimize the DNN partitioning strategy, ISAC beamforming, and computational resource allocation at the MEC servers and devices, subject to sensing beampattern constraints. We also propose an efficient two-layer optimization algorithm. In the inner layer, we derive closed-form solutions for computational resource allocation using the Karush-Kuhn-Tucker conditions. Moreover, we design the ISAC beamforming vectors via an iterative method based on the majorization-minimization and weighted minimum mean square error techniques. In the outer layer, we develop a cross-entropy based probabilistic learning algorithm to determine an optimal DNN partitioning strategy. Simulation results demonstrate that the proposed framework substantially outperforms existing two-tier schemes in inference latency.
Abstract:Communication-centric Integrated Sensing and Communication (ISAC) has been recognized as a promising methodology to implement wireless sensing functionality over existing network architectures, due to its cost-effectiveness and backward compatibility to legacy cellular systems. However, the inherent randomness of the communication signal may incur huge fluctuations in sensing capabilities, leading to unfavorable detection and estimation performance. To address this issue, we elaborate on random ISAC signal processing methods in this article, aiming at improving the sensing performance without unduly deteriorating the communication functionality. Specifically, we commence by discussing the fundamentals of sensing with random communication signals, including the performance metrics and optimal ranging waveforms. Building on these concepts, we then present a general framework for random ISAC signal transmission, followed by an in-depth exploration of time-domain pulse shaping, frequency-domain constellation shaping, and spatial-domain precoding methods. We provide a comprehensive overview of each of these topics, including models, results, and design guidelines. Finally, we conclude this article by identifying several promising research directions for random ISAC signal transmission.
Abstract:Integrated sensing and communication (ISAC) has been considered a key feature of next-generation wireless networks. This paper investigates the joint design of the radar receive filter and dual-functional transmit waveform for the multiple-input multiple-output (MIMO) ISAC system. While optimizing the mean square error (MSE) of the radar receive spatial response and maximizing the achievable rate at the communication receiver, besides the constraints of full-power radar receiving filter and unimodular transmit sequence, we control the maximum range sidelobe level, which is often overlooked in existing ISAC waveform design literature, for better radar imaging performance. To solve the formulated optimization problem with convex and nonconvex constraints, we propose an inexact augmented Lagrangian method (ALM) algorithm. For each subproblem in the proposed inexact ALM algorithm, we custom-design a block successive upper-bound minimization (BSUM) scheme with closed-form solutions for all blocks of variable to enhance the computational efficiency. Convergence analysis shows that the proposed algorithm is guaranteed to provide a stationary and feasible solution. Extensive simulations are performed to investigate the impact of different system parameters on communication and radar imaging performance. Comparison with the existing works shows the superiority of the proposed algorithm.
Abstract:Orthogonal Time Frequency Space (OTFS) modulation has recently attracted significant interest due to its potential for enabling reliable communication in high-mobility environments. One of the challenges for OTFS receivers is the fractional Doppler that occurs in practical systems, resulting in decreased channel sparsity, and then inaccurate channel estimation and high-complexity equalization. In this paper, we propose a novel unsupervised deep learning (DL)-based OTFS channel estimation and symbol detection scheme, capable of handling different channel conditions, even in the presence of fractional Doppler. In particular, we design a unified plug-and-play (PnP) framework, which can jointly exploit the flexibility of optimization-based methods and utilize the powerful data-driven capability of DL. A lightweight Unet is integrated into the framework as a powerful implicit channel prior for channel estimation, leading to better exploitation of the channel sparsity and the characteristic of the noise simultaneously. Furthermore, to mitigate the channel estimation errors, we realize the PnP framework with a fully connected (FC) network for symbol detection at different noise levels, thereby enhancing robustness. Finally, numerical results demonstrate the effectiveness and robustness of the algorithm.
Abstract:Integrated Sensing and Communications (ISAC) is expected to play a pivotal role in future 6G networks. To maximize time-frequency resource utilization, 6G ISAC systems must exploit data payload signals, that are inherently random, for both communication and sensing tasks. This paper provides a comprehensive analysis of the sensing performance of such communication-centric ISAC signals, with a focus on modulation and pulse shaping design to reshape the statistical properties of their auto-correlation functions (ACFs), thereby improving the target ranging performance. We derive a closed-form expression for the expectation of the squared ACF of random ISAC signals, considering arbitrary modulation bases and constellation mappings within the Nyquist pulse shaping framework. The structure is metaphorically described as an ``iceberg hidden in the sea", where the ``iceberg'' represents the squared mean of the ACF of random ISAC signals, that is determined by the pulse shaping filter, and the ``sea level'' characterizes the corresponding variance, caused by the randomness of the data payload. Our analysis shows that, for QAM/PSK constellations with Nyquist pulse shaping, Orthogonal Frequency Division Multiplexing (OFDM) achieves the lowest ranging sidelobe level across all lags. Building on these insights, we propose a novel Nyquist pulse shaping design to enhance the sensing performance of random ISAC signals. Numerical results validate our theoretical findings, showing that the proposed pulse shaping significantly reduces ranging sidelobes compared to conventional root-raised cosine (RRC) pulse shaping, thereby improving the ranging performance.
Abstract:Revolutionary sixth-generation wireless communications technologies and applications, notably digital twin networks (DTN), connected autonomous vehicles (CAVs), space-air-ground integrated networks (SAGINs), zero-touch networks, industry 5.0, and healthcare 5.0, are driving next-generation wireless networks (NGWNs). These technologies generate massive data, requiring swift transmission and trillions of device connections, fueling the need for sophisticated next-generation multiple access (NGMA) schemes. NGMA enables massive connectivity in the 6G era, optimizing NGWN operations beyond current multiple access (MA) schemes. This survey showcases non-orthogonal multiple access (NOMA) as NGMA's frontrunner, exploring What has NOMA delivered?, What is NOMA providing?, and What lies ahead?. We present NOMA variants, fundamental operations, and applicability in multi-antenna systems, machine learning, reconfigurable intelligent surfaces (RIS), cognitive radio networks (CRN), integrated sensing and communications (ISAC), terahertz networks, and unmanned aerial vehicles (UAVs). Additionally, we explore NOMA's interplay with state-of-the-art wireless technologies, highlighting its advantages and technical challenges. Finally, we unveil NOMA research trends in the 6G era and provide design recommendations and future perspectives for NOMA as the leading NGMA solution for NGWNs.
Abstract:Orthogonal time frequency space (OTFS) modulation has been viewed as a promising technique for integrated sensing and communication (ISAC) systems and aerial-terrestrial networks, due to its delay-Doppler domain transmission property and strong Doppler-resistance capability. However, it also suffers from high processing complexity at the receiver. In this work, we propose a novel pre-equalization based ISAC-OTFS transmission framework, where the terrestrial base station (BS) executes pre-equalization based on its estimated channel state information (CSI). In particular, the mean square error of OTFS symbol demodulation and Cramer-Rao lower bound of sensing parameter estimation are derived, and their weighted sum is utilized as the metric for optimizing the pre-equalization matrix. To address the formulated problem while taking the time-varying CSI into consideration, a deep learning enabled channel prediction-based pre-equalization framework is proposed, where a parameter-level channel prediction module is utilized to decouple OTFS channel parameters, and a low-dimensional prediction network is leveraged to correct outdated CSI. A CSI processing module is then used to initialize the input of the pre-equalization module. Finally, a residual-structured deep neural network is cascaded to execute pre-equalization. Simulation results show that under the proposed framework, the demodulation complexity at the receiver as well as the pilot overhead for channel estimation, are significantly reduced, while the symbol detection performance approaches those of conventional minimum mean square error equalization and perfect CSI.
Abstract:Orthogonal time frequency space (OTFS) modulation is anticipated to be a promising candidate for supporting integrated sensing and communications (ISAC) systems, which is considered as a pivotal technique for realizing next generation wireless networks. In this paper, we develop a minimum bit error rate (BER) precoder design for an OTFS-based ISAC system. In particular, the BER minimization problem takes into account the maximum available transmission power budget and the required sensing performance. Different from prior studies that considered ISAC in the time-frequency (TF) domain, we devise the precoder from the perspective of the delay-Doppler (DD) domain by exploiting the equivalent DD domain channel due to the fact that the DD domain channel generally tends to be sparse and quasi-static, which can facilitate a low-overhead ISAC system design. To address the non-convex optimization design problem, we resort to optimizing the lower bound of the derived average BER by adopting Jensen's inequality. Subsequently, the formulated problem is decoupled into two independent sub-problems via singular value decomposition (SVD) methodology. We then theoretically analyze the feasibility conditions of the proposed problem and present a low-complexity iterative solution via leveraging the Lagrangian duality approach. Simulation results verify the effectiveness of our proposed precoder compared to the benchmark schemes and reveal the interplay between sensing and communication for dual-functional precoder design, indicating a trade-off where transmission efficiency is sacrificed for increasing transmission reliability and sensing accuracy.
Abstract:This paper introduces an integrated sensing, computing, and semantic communication (ISCSC) framework tailored for smart healthcare systems. The framework is evaluated in the context of smart healthcare, optimising the transmit beamforming matrix and semantic extraction ratio for improved data rates, sensing accuracy, and general data protection regulation (GDPR) compliance, while considering IoRT device computing capabilities. Semantic metrics such as semantic transmission rate and semantic secrecy rate are derived to evaluate data rate performance and GDPR risk, respectively, while the Cram\'er-Rao Bound (CRB) assesses sensing performance. Simulation results demonstrate the framework's effectiveness in ensuring reliable sensing, high data rates, and secure communication.
Abstract:In this paper, we propose a novel symbiotic sensing and communication (SSAC) framework, comprising a base station (BS) and a passive sensing node. In particular, the BS transmits communication waveform to serve vehicle users (VUEs), while the sensing node is employed to execute sensing tasks based on the echoes in a bistatic manner, thereby avoiding the issue of self-interference. Besides the weak target of interest, the sensing node tracks VUEs and shares sensing results with BS to facilitate sensing-assisted beamforming. By considering both fully digital arrays and hybrid analog-digital (HAD) arrays, we investigate the beamforming design in the SSAC system. We first derive the Cramer-Rao lower bound (CRLB) of the two-dimensional angles of arrival estimation as the sensing metric. Next, we formulate an achievable sum rate maximization problem under the CRLB constraint, where the channel state information is reconstructed based on the sensing results. Then, we propose two penalty dual decomposition (PDD)-based alternating algorithms for fully digital and HAD arrays, respectively. Simulation results demonstrate that the proposed algorithms can achieve an outstanding data rate with effective localization capability for both VUEs and the weak target. In particular, the HAD beamforming design exhibits remarkable performance gain compared to conventional schemes, especially with fewer radio frequency chains.